
1

ICT286
Web and Mobile Computing

Topic 8
Accessing MySQL

Databases from PHP

2

Objectives
• Understand the basic concepts of databases and Data

Base Management Systems.
• Understand and be able to use SQL language

– to create, alter and drop tables in a database.
– to insert, update and delete the contents of a table
– to make queries to database tables using SELECT

commands.
• Be able to use MySQL from the command line.
• Understand and be able to use sequential arrays in PHP
• Understand and be able to use associative arrays in PHP
• Be able to use MySQL from PHP.

3

Sebesta: Ch 13.1 – 13.5.

Readings

4

PHP and DBMS
• PHP has strong support for Database

Management Systems (DBMSs) interfacing.

• It has library modules (called PHP extensions)
to support many of the most popular DBMSs on
the market.

• These DBMSs include MySQL, Oracle, Sybase,
mSQL, Generic ODBC, and PostgreSQL.

5

PHP and MySQL
• PHP is most commonly associated with the

MySQL DBMS, and used in tandem with it to
create dynamic data-driven web sites.

• The close association is mainly due to:
• Both packages being freely available,
• Support for both usually comes through the same

developer communities, and
• PHP has large support through its MySQL

extensions.

6

Databases in DBMS
• A database in a DBMS is a place to store data.
• Data in a database is stored in tables.
• Each table should contain information about one

and only one thing.
• For example, you may have a table of products,

a table of customers, or a table of users.
• A table is are also called an entity.
• These table based databases are called

relational databases.

7

Tables in a Database
• A table in a database has a number of rows.

• Each row contains data for one occurrence of
the entity.

• For example, in a CUSTOMER table, each row
would contain all the information about one
customer.

• Each row in a database table is also called a
record.

8

Tables in a Database

Number FName LName Phone

34987 Mary Tan 9355 7621

76231 Felicity Smith 9332 6652

98232 Jung Pradhan 9353 8745

64593 Phoebe Murphy 9330 6649

Example: Customer Table

9

Tables in a Database
• Each row in a database table is composed of

one or more columns.

• Each column is a single piece of information that
you want to store about the entity.

• In the example on the previous slide, the
columns are customer Number, customer
FName, customer LName and customer Phone
number.

• Each column is also called a field or an attribute.

10

Tables in a Database
• This unit will not cover the design of databases

(especially normalisation), as this will take too long.
• However, if you find when you create a table that

you want to store multiple occurrences of a field in
the same table, then you should create another
table.

• For example, if you are storing information about
customers and orders, there could be multiple
orders for each customer (duplicating the
customer's information).

• When this occurs, the information about each order
should be stored in a separate order table, not in
the customer table.

11

Tables in a Database
• Each column in a database table needs to be

given a name and a data type.

• Depending on the data type, you may also need
to specify a length (size) for the column.

• Different DBMSs allow you to have different data
types. We will discuss the possibilities in
MySQL later.

12

Indexing
• The user can request the DBMS to create an index

for a column (or a combination of columns).
• An index is like the index at the end of a book. It

allows us to quickly find the pages containing the
desired content in the book.

• The DBMS would create a file containing the index
mapping each each column value to the address of
the corresponding row or rows.

• An index is also called a key for the database table.
• By creating an index, the DBMS can quickly retrieve

a single row or group of rows from the table using its
key.

13

Primary Key
• In general, though not necessarily, each table in

a database would have a column, or a
combination of columns, whose value uniquely
identifies a row of the table.

• For example, in the CUSTOMER table, the the
customer Number would uniquely identifies each
customer.

• Most database queries would involve the values
in such a column or columns.

• To speed up the database queries, we should
create an index for those column or columns.

14

Primary Key
• When creating a table, we can define those

column or columns as the primary key of the table.

• The DBMS would automatically create an index
for the column (or columns).

• Database queries would be sped up substantially
due to the index.

• However, we must make sure that for the column
designated as primary key, its value for each row
in the table is always present (not NULL) and is
unique in the table.

15

SQL Language
• We use SQL (Structured Query Language) to

create, query and modify relational databases.

• There is a standard syntax for SQL, and most
DBMSs adhere to this standard. There are
usually small variations, usually extensions, for
the syntax between different DBMSs, but these
are very minor.

• SQL reserved words are case insensitive.

• In this topic, we will only discuss CREATE
TABLE, ALTER TABLE, DROP TABLE, SELECT,
INSERT, UPDATE and DELETE commands.

16

Database Access
• Client-Server architecture.

• Client tasks:
• Provide a way for users to submit queries
• Run applications that use the results of queries
• Display the results of queries

• Server tasks:
• Implement a data manipulation language, e.g., SQL,

which can directly access and update the databases

17

Web-Based Database
Access

• For web-based database access, the web client
is not directly connected to the database server.
Instead, the web client is connected to the web
server and the web server is connected with the
database server.

• The web server runs the applications (e.g., PHP
scripts) and the web clients get the results from
the web server.

18

SQL In MySQL
• In this topic, we will look at SQL in MySQL to

perform the basic operations.

• This is only a small subset of the things you can
do in MySQL, but they are the things that you will
use most frequently.

• First we need to get into MySQL...

19

Accessing MySQL On
Ceto Server

• You have each been created a MySQL account
on the MySQL DBMS running on ceto.

• For convenience, your account userid, password
and database name are all the same: the letter X
followed by your student number. For instance, if
your student number is 12345678, then your
userid, password and the database name are all
X12345678.

• You will need to use a secure shell (like putty or
ssh) to login to ceto first and from there you can
access your MySQL account.

20

Accessing MySQL From
Linux Terminal

• After you have logged into ceto, at the shell
prompt, start MySQL client by typing the following
command:
mysql –u userid –p
… you will be prompted for your MySQL password.

• To use the database that has been created for
you, type:
use databasename;

Note: each command typed from MySQL prompt must
end with semicolon “;”.

21

Creating A Table In MySQL
• A simplified version of the general form of the

SQL command to create a table is:
CREATE TABLE tablename (attributeName

datatype, ...);

• Example:
CREATE TABLE Customer (

CustNo int,

CustName varchar(255)

);

22

View Tables In MySQL
• To display a list of tables in your current

database (don’t forget “;” at the end):
SHOW TABLES;

• To see the description of a table
(columns):
DESCRIBE tablename;

23

Character Data Types
Data
Type

Example Description

char char(4) A fixed length character field;
maximum 255 characters. The
example defines a string of length 4.

varchar varchar(10) A variable length character field;
maximum 255 characters. The
example defines a string up to length
10.

text text A variable length character field;
maximum 65,535 characters.

24

Numeric Data Types
Data Type Example Description

int
integer

int(4) A non decimal number. In this
example, the integer is
displayed in 4 digits, padding
with leading spaces may be
needed.

float float(5,2) A decimal number. In this
example, the total display
length is 5 characters
including 2 digits after the
decimal point.

25

Other Data Types

Data Type Example Description
date date A date in the format

YYYY-MM-DD.

blob blob Binary data storage.

There are many other data types available in
MySQL. You can research these from the
textbook or the Web

26

Defining Primary Key
• You can define a primary key for a table while

creating the table or else add it later on.

• It is best to define the structure of the database
first before adding any data. Otherwise there can
be problems if the data does not conform to the
changes you want to make. For example, you
cannot make a field a primary key if there are any
NULL values, or non-unique values.

27

Defining Primary Key
• To create a primary key whilst creating the table

use:
CREATE TABLE Customer (

CustNo int PRIMARY KEY,

CustName varchar(255)

);

Or

CREATE TABLE Customer (

CustNo int,

CustName varchar(255),

PRIMARY KEY (CustNo)

);

28

Alter Tables
• The ALTER TABLE command can be used to

change the structure of a table, including adding
a primary key. For example:
ALTER TABLE Customer

ADD PRIMARY KEY (CustNo);

29

Other ALTER TABLE
Commands

CLAUSE Description
ADD COLUMN Adds a new column to the end of the

table.
DROP COLUMN Removes a column from a table including

all of the data.
RENAME AS Changes the name of the table
ADD INDEX Adds a new index on a field(s) of the

table.
DROP INDEX Removes an existing index.

The general form of the ALTER TABLE statement is:
ALTER TABLE tablename clause;

30

Dropping Tables
• To delete a table and all its data use the DROP
TABLE command:

DROP TABLE tablename;

31

Adding Data To Tables
• Now we have created the structure of the table,

we can add some data – the records or rows. To
do this use the insert command:

INSERT INTO tablename
VALUES (fieldvalue, . . .);

• For example:
INSERT INTO Customer

VALUES (1234, ’Hong');

32

Deleting Data From Tables
• To delete data from a table use the delete command:

DELETE FROM tablename WHERE condition;

Note: if you do not specify a WHERE clause, All data in
the table will be deleted, but the table will still exist.

• For example:
DELETE FROM Customer

WHERE CustNo = 1234;

33

Updating Tables
• To update content of a table use the update command:

UPDATE tablename
SET col_name1 = value1,
.
SET col_namen = valuen
WHERE condition;

• The WHERE clause select all rows that satisfy the
condition using the primary key.

• The SET clause change the values of those columns
of the selected rows.

34

Updating Tables
• Example

UPDATE Customer
SET CustName = ‘John’
WHERE CustNo = 1234;

35

Making Queries
• We store information in a database so that we

can get the information out at a later date. To do
this we use the SELECT command. The general
format of the SELECT command is:

SELECT fieldname, …
FROM tablename, …

WHERE condition;

36

Example SELECT
Statements

• The next few slides contain some examples of
the kinds of things that can be done with
select. They are by no means exhaustive.
You can research the select statement in the
textbook or the Web.

37

Example SELECT
Statements

SELECT * FROM Customer;

Selects all the columns and all the rows in the
table Customer.

38

Example SELECT
Statements

SELECT CustName
FROM Customer

WHERE CustNo = 1234;

Selects the Customer name for the customer
with Number 1234 (if it exists) in the table
Customer.

39

Example SELECT
Statements

SELECT CustName
FROM Customer
WHERE CustNo > 5000;

Selects the names of those customers whose
customer number is greater than 5000 (if any
exists) in the table Customer.

40

Example SELECT
Statements

SELECT CustNo
FROM Customer

WHERE CustName IS NULL;

Selects the Customer number for all customers
with names that are empty in the table
Customer.

41

Example SELECT
Statements

SELECT CustNo
FROM Customer

WHERE CustName LIKE 'C%';

Selects the Customer number for all customers
with names that start with C in the table
Customer.
Here ‘C%’ defines a string pattern. The symbol
% is the wildcard.

42

Example SELECT
Statements

SELECT CustNo
FROM Customer
WHERE (CustName LIKE 'C%')
OR (CustName LIKE 'B%');

Selects the Customer number for all customers
with names that start with C or B in the table
Customer.

43

Example SELECT
Statements

SELECT CustNo, CustName

FROM Customer

WHERE (CustName LIKE 'C%')

AND (CustNo < 2000);

Selects the Customer number and Customer
name for all customers with names that start
with C and numbers that are less than 2000.

44

Where To From Here…
• This is only the beginning of the possibilities with

the select statement. It is also only the beginning
of what is possible with databases.

• These basics should give you enough to complete
the second assignment.

• When you do ICT285 you will learn much more
about these topics.

45

Access MySQL In PHP
• Now you can create and populate tables at the

command line in MySQL, we will see how to do
the same thing in PHP.

46

Connect To MySQL Server
• Firstly you need to connect to the MySQL server

from your PHP script.

• To do so, you need the host name of the server (
which is "localhost" as the MySQL server runs on
the ceto server), your MySQL account name and
password, and the database name. Eg,

$host = "localhost";

$user = "X12345678";

$password = "X12345678";

$dbname = "X12345678"

47

Connect To MySQL Server
• To connect to the MySQL server from within PHP

you may use the mysqli_connect command.
For example:

<?php
$dbc = mysqli_connect($host, $user,

$password, $dbname);
// check connection

if (mysqli_connect_errno()) {

echo "Failed to connect to MySQL"

. mysqli_connect_error();

}
?>

48

Select The Database

• To select or change the database (same as the
USE command from the command line) use the
mysqli_select_db command. For example:

$dbname = "X12345678";

mysqli_select_db($dbc, $dbname);

49

Error Functions
• It is possible that you may encounter errors to

the database operations. The following functions
can be used to code for these cases.

• @ in front of a function will suppress any error
messages that would be generated.

• die ('error message'); will display the
message in the string and stop the script.

50

Error Functions
• mysqli_error() will display a descriptive

message about the error that occurred.

• mysqli_errno() will display the error number
for the error that occurred.

Example:
@mysqli_select_db($dbc, $dbname) OR

die ('Cannot connect to database '

. mysqli_error($dbc));

51

PHP Arrays
• A PHP array is a generalisation of the arrays of other

languages.
• A PHP array is really a mapping of keys to values, where

the keys can be numbers (like traditional arrays) or
strings (associative arrays).

• There are two types of arrays; sequential arrays and
associative arrays. We will consider sequential arrays
first.

• A sequential array is like a traditional array. Its keys are
indices.

• An associated array is accessed using its keys.

52

Sequential Arrays
• You create a sequential array using the array() function.

For example:
$students=array('Mary', 'Jim', 'Felicity');

• This is equivalent to:
$students[]='Mary';

$students[]='Jim';

$students[]='Felicity’;

• When assigning a value like the above, the value is
added to the end of the array.

53

Sequential Arrays
• To access elements of an array, use the index.

Index starts at 0. For example:
$scores=array(75, 50, 100, 25);

$scores[]=50;

$average=($scores[0]+$scores[1]

+$scores[2]+$scores[3]+$scores[4])/5;

54

Sequential Arrays
• You can set index values explicitly using the =>

operator. For example:
$scores=array(1=>75, 3=>100, 2=>60);

$scores[]=50;

In the above example, we will add value to the
end of the array; i.e., element at index 4
($scores[4]).

55

Sequential Arrays
• Often you will want to loop through the values

of an array. For example:

$scores=array(75, 50, 100, 25, 50);

$average=0;

for ($i=0; $i<count($scores); $i++) {

$average=$average + $scores[$i]

}

$average=$average / count($scores);

56

Sequential Arrays
• There is also a foreach loop construct that you can

use. For example:
$scores=array(75, 50, 100, 25, 50);

$average=0;

foreach ($scores as $item) {

$average=$average + $item

}

$average=$average / count($scores);

In the above loop, the next array element from
$scores is assigned to variable $item.

57

Associative Arrays
• An associative array is like a sequential array

except that the indices (keys) do not have to be
sequential numbers. They can be string
values. For example:

$months = array('Jan'=>31, 'Feb'=>28, 'Mar'=>31, 'Apr'=>30,
 'May'=>31, 'Jun'=>30, 'Jul'=>31, 'Aug'=>31,

 'Sep'=>30, 'Oct'=>31, 'Nov'=>30, 'Dec'=>31);

Name of the associative array.
Index 'Jan' and value 31.

Index 'Feb' and value 28

Index 'Mar' and value 31.

58

Associative Arrays
• When we want to reference an element of an

associative array we use the index. These
indices are not restricted to be numerical values.

• In the previous example, the "index" is a string
such as “Jan” or “Apr”. These indices are known
as the keys.

• For example:

$days=$months['Mar'];

Will return the number of days in the month of
March.

59

Associative Arrays
• You use a foreach loop to run through the

elements of the array. For example:

foreach ($months as $key => $value) {

… process $key and/or $value

}

• To add or change a value in an associative array
use the key. For example (in a leap year):

$months['Feb']=29;

$months['NewMonth']=20;

60

Associative Arrays
• To delete an element from an associative array

use the unset function. For example:

unset($months['NewMonth']);

• To check if a key exists in an associative array,
use the isset function. For example:

if (isset($months['Jan']) {

...

}

61

Associative Arrays
• To sort an associative array there are two

functions;

– asort sorts the array based on the values;

– ksort sorts the array based on the key.;

– In both cases the relationships between the key and
value are maintained.

• For example:

asort($months);

ksort($months);

62

Array Functions
There are various functions you can use with arrays:

Function Description

array_shift() Removes an item from the beginning
of the array.

array_unshift() Adds an item to the beginning of the
array.

array_pop() Removes an item from the end of the
array.

array_push() Adds an item to the end of the array.

63

Array Functions
• For example:

$scores=array(75, 50, 100, 25, 50);

$first=array_shift($scores);

The array $scores would contain 50, 100, 25,
and 50.

• The following statement adds 25 to the
beginning of the array:
array_unshift($scores, 25);

64

More Array Functions

Function Description

max() Returns the maximum value of the array.

min() Returns the minimum value of the array.

array_sum() Sums the numerical values of the array.

sort() Sorts the elements of the array.

65

Array Functions
• For example:

$scores=array(75, 50, 100, 25, 50);

$biggest=max($scores);

$smallest=min($scores);

$total=array_sum($scores);

sort($scores);

66

Array Functions
• Another example:

$scores=array(“2 nights”, “5 days”,

100, “2 more”);

$total=array_sum($scores);

The variable $total contains the value 109 –
recall string coercion from Topic 7.

• There are other array functions you can
investigate for yourself.

67

Predefined Arrays
• PHP has a set of available predefined arrays

containing variables from the web server (if
applicable), the environment, and user input.

• These predefined arrays are associative arrays.

• We have already used some of these arrays:
$_GET

$_POST

68

Example Predefined Arrays

Variable Name Description
$_COOKIE['lastaccess'] Cookie with name ‘lastaccess’ - same as

a previous example

$_SESSION['sample_hidden'] The session variable $sample_hidden.

$_SERVER['SERVER_NAME'] The name of the web server running the
PHP script.

$_SERVER['SCRIPT_NAME'] The name of the current PHP script.

$_GET['MyName'] The value of a parameter called “MyName”,
passed from a GET request

$_POST['MyName'] The value of a parameter called “MyName”,
passed from a POST

$_ENV['LOGNAME'] The ‘LOGNAME’ environment variable.

69

Running A Query
• The mysqli_query command can be used to run

an SQL query.

• Example 1:
$query = "SELECT * FROM Customer";
$result = mysqli_query($dbc, $query);

• Example 2:
$name = "Hong";
$query = "SELECT * FROM Customer WHERE
CustName = '$name'";

$result = mysqli_query($dbc, $query);

70

Running A Query
• If the query is an INSERT, DELETE or UPDATE,
$result will contain true or false depending on
whether the query worked or not.
– It can be used to inform the user of the result.

• If the query is a SELECT, $result will be a
pointer to the resulting data set.

71

Accessing The Result
Of A Query

• After running the mysqli_query command, the
rows returned can be accessed using a special
while loop. Example:
while($row=mysqli_fetch_array($result,

MYSQLI_ASSOC)){
// process one row stored in $row

}

• Each field of the selected row can be retrieved by
using the column name as the key into the
associative array $row. For example

$row['CustNo']

72

Accessing The Result
Of A Query

• Alternatively you can use the MYSQLI_NUM
constant to get the result array with number indices
and then access the columns using indices.

• Example:
$query = 'SELECT * FROM Customer';
$result = mysqli_query($dbc, $query);
while($row=mysqli_fetch_array($result,

MYSQLI_NUM)){
// process one row in $row, eg,
// $row[0] contain the CustNo of each row
// $row[1] contain the CustName of each row.

}

73

Release Resources
• It is a good practice to close an object and free the

resources used by the object when you have
finished with them.

• To close the SQL query resource:

mysqli_free_result ($result);

• To close the connection to MySQL server:
mysqli_close($dbc);

74

References

• PHP Tutorial from W3School:
http://www.w3schools.com/php/default.asp

• MySQL Tutorial from W3Schools:
http://www.w3schools.com/sql/default.asp

• MySQL Tutorial from MySQL:
https://dev.mysql.com/doc/mysql-tutorial-
excerpt/5.7/en/

http://www.w3schools.com/php/default.asp
http://www.w3schools.com/sql/default.asp
https://dev.mysql.com/doc/mysql-tutorial-excerpt/5.7/en/

